WENLIANG GUO

wlguo048@gmail.com linkedin.com/in/wenliang-guo wenliangguo.github.io (917)330-2933

EDUCATION

Columbia University, Fu Foundation School of Engineering and Applied Science	New York, US
MS in Electrical Engineering (GPA: 3.7574.0)	Expected Feb 2024
Coursework: Machine & Deep & Reinforcement Learning, Big Data Analytics, Causality	
Xidian University, School of Telecommunications Engineering	Xi'an, CN
BE in Telecommunications Engineering (GPA: 3.6 / 4.0)	Jun 2022
Coursework: Digital Signal Processing, Stochastic Process, Information Theory, Computer Network	
TECHNICAL SKILLS	
Programming: Python, C/C++/C#, Verilog, MATLAB, LaTeX	
 Applications: Linux (Ubuntu), Jupyter, Spark, Hadoop, Visio, Vivado, OPNET 	
PUBLICATIONS	
• Yulei Niu, Wenliang Guo, Long Chen, Xudong Lin, and Shih-Fu Chang, SCHEMA: State (CHangEs MAtter for
Procedure Planning in Instructional Videos, openreview.net/forum?id=abL5LJNZ49. (Under Revie	ew)
• Xiao Xiao, Wenliang Guo, Rui Chen, Yilong Hui, Jianing Wang, and Hongyu Zhao, A Swin	Transformer-Based
Encoding Booster Integrated in U-Shaped Network for Building Extraction, Remote Sensing 14, no	o. 11 (2022): 2611.
Wenliang Guo, Xiao Xiao, Yilong Hui, Wenming Yang, and Amir Sadovnik, Heterogeneous Attentiv	on Nested U-Shaped
Network for Blur Detection, IEEE Signal Processing Letters 29 (2021): 140-144.	
RESEARCH EXPERIENCE	
Digital Video and Multimedia (DVMM) Lab, Columbia University	New York, US
Research Assistant	Jan 2023 - Present
 Participated proposal to enhance state representation via cross-modal contrastive learning for proc Implemented powel data aplit based on ariginal dataset to debice probability of as assurring action 	cedure planning task.
 Implemented networks with different designs and experimented with performances on multiple vid 	oo datasats
 Implemented networks with different designs and experimented with performances on multiple vid Visualized intermediate process and experimental results using Puthon 	eo ualasels.
Advanced Transportation Research Lab, Xidian University	Xi'an, CN
Student Researcher	Jun 2021 - May 2022
• Designed a deep learning network based on U-shaped architecture for remote sensing building extraction.	
• Integrated a novel encoding booster to convolutional neural network for surpassing limitation of local receptive field and	
extracting large-scale feature, accuracy is improved by at most 5% compared with state-of-the-art	algorithms.
 Constructed a snifted-window Transformer pyramid and explored a new approach to enable niera 	archical extraction of
Semanuc monnation for multi-scale objects capture.	Dec 2020 Jul 2021
Proposed an end-to-end convolution neural network for blur detection application and improved mo	Dec 2020 - Jul 2021
than state-of-the-art networks	ne than 570 accuracy
 Introduced pyramid pooling into encoders to extract multi-scale features, reduce semantic loss and 	d parameters
 Embedded U-shaped networks and introduced a channel attention mechanism into decoders to in 	crease depth and to
augment informative features while maintaining a low number of parameters.	
COURSEWORK PROJECTS	
EECS E6691 Advanced Deep Learning, Columbia Engineering	New York, US
Proposed framework using language-description to supervise multi-scale feature extraction.	
FECS E6893 Big Data Analytics Columbia Engineering	New Vork 119
Designed and implemented Transformer-based system anomaly detection algorithm	INEW FUR, US
EECS E6691 Reinforcement Learning, Columbia Engineering	New York US
 Implemented model-agnostic meta-learning algorithm applied to Atari gaming environments 	
COMS E6998 Causal Trustworthy AI, Columbia Engineering	New York, US

Analyzed action recognition from causal perspective, build causal relation via transportable training.